Пятница, 19.04.2024, 04:38
Приветствую Вас Гость | Регистрация | Вход

Здоровье - Н

Главная » 2007 » Декабрь » 16 » Роль оксида азота и цитокинов в развитии синдрома острого повреждения легких
12:06
Роль оксида азота и цитокинов в развитии синдрома острого повреждения легких
Синдром острого повреждения легких (респираторный дистресс-синдром взрослых, РДСВ) - одна из наиболее тяжелых форм острой дыхательной недостаточности, возникающая у больных на фоне тяжелой травмы, сепсиса, перитонита, панкреатита, обильной кровопотери, аспирации, после обширных оперативных вмешательств и в 50-60% случаев приводящая к летальному исходу [1,2,31,50].

Данные исследований патогенеза РДСВ, разработки критериев ранней диагностики и прогноза синдрома немногочисленны, достаточно противоречивы, что не позволяет разработать стройную диагностическую и лечебную концепцию [18,30,31,36,54].

Установлено, что в основе РДСВ лежит повреждение эндотелия легочных капилляров и эпителия альвеол, нарушение реологических свойств крови, приводящие к отеку интерстициальной и альвеолярной ткани, явлениям воспаления, ателектаза, легочной гипертензии [1,15,27,50].

В литературе последних лет появилось достаточно сведений об универсальном регуляторе клеточного и тканевого метаболизма - оксиде азота [4,5,17,57].

Интерес к оксиду азота (NO) обусловлен прежде всего тем, что он вовлекается в регуляцию множества функций, включая сосудистый тонус, сердечную сократимость, агрегацию тромбоцитов, нейротрансмиссию, синтез АТФ и белков, иммунную защиту [8,9, 30].

Кроме того, в зависимости от выбора молекулярной мишени и особенностей взаимодействия с ней, NO оказывает и повреждающий эффект [4,8].

Считается, что пусковым механизмом активации клеток является несбалансированная цитокинемия [7, 24]. Цитокины - это растворимые пептиды, выполняющие функции медиаторов иммунной системы и обеспечивающие клеточные кооперации, позитивную и негативную иммунорегуляцию [3,6].

Мы попытались систематизировать имеющиеся в литературе сведения о роли NO и цитокинов в развитии синдрома острого повреждения легких.

NO представляет собой растворимый в воде и жирах газ. Его молекула является неустойчивым свободным радикалом, легко диффундирует в ткань, поглощается и разрушается настолько быстро, что способна воздействовать только на клетки ближайшего окружения [4,9,13].

Молекула NO обладает всеми свойствами, присущими классическим мессенджерам: быстро продуцируется, действует в весьма низких концентрациях,

после прекращения действия внешнего сигнала быстро превращается в другие соединения, окисляясь до стабильных неорганических оксидов азота: нитрита и нитрата [48]. Длительность жизни NO в ткани составляет, по разным данным, от 5 до 30 секунд [6,12].

Основными молекулярными мишенями NО являются железосодержащие ферменты и белки: растворимая гуанилатциклаза, собственно нитрооксидсинтаза (NOS), гемоглобин, митохондриальные ферменты, ферменты цикла Кребса, синтеза белка и ДНК [9,17, 40].

Синтез NO в организме происходит путем энзиматических превращений азотсодержащей части аминокислоты L-аргинина под влиянием специфического фермента NOS и опосредован взаимодействием ионов кальция с кальмодулином [17,21]. Фермент инактивируется при низких концентрациях и максимально активен при 1 мкМ свободного кальция [5].

Идентифицированы две изоформы NOS: конститутивная (cNOS) и индуцированная (iNOS), являющиеся продуктами различных генов. Кальций-кальмодулинзависимая cNOS постоянно присутствует в клетке и способствует выделению небольшого количества NO в ответ на рецепторную и физическую стимуляцию.

NO, образующийся под влиянием этой изоформы, действует как переносчик в ряде физиологических ответов. Кальций-кальмодулиннезависимая iNOS образуется в различных типах клеток в ответ на провоспалительные цитокины, эндотоксины и оксиданты [5,9,21,28].

Эта изоформа NOS транскрибируется специфическими генами 17 хромосомы и способствует синтезу большого количества NO [12,21].

Фермент также классифицируют по трем типам: NOS-I (нейрональный), NOS-II (макрофагальный), NOS-III (эндотелиальный) [13].

Семейство ферментов, синтезирующих NO, найдено во множестве клеток легких: в эпителиоцитах бронхов, в альвеолоцитах, в альвеолярных макрофагах, в тучных клетках, в эндотелиоцитах бронхиальных артерий и вен, в гладких миоцитах бронхов и сосудов, в неадренергических нехолинергических нейронах [12,21,52,59,60].

Конститутивная способность эпителиоцитов бронхов и альвеол человека и млекопитающих секретировать NО была подтверждена в многочисленных исследованиях [12,21,30,39,52].

Установлено, что верхние отделы дыхательных путей человека, также как и нижние отделы, участвуют в образовании NO [5,23].

Исследования, проведенные у больных с трахеостомией, показали, что в воздухе, выдыхаемом через трахеостому, количество газа значительно меньше, по сравнению с полостью носа и рта [5,33].

Значительно страдает синтез эндогенного NO у больных, находящихся на искусственной вентиляции легких [12]. Исследования подтверждают, что освобождение NO происходит в момент бронходилятации и контролируется системой блуждающего нерва [5].

Получены данные, что образование NO в эпителии дыхательных путей человека повышается при воспалительных заболеваниях органов дыхания [5,8,12,30]. Синтез газа увеличивается за счет активации индуцированной NOS под влиянием цитокинов, а также эндотоксинов и липополисахаридов [21,28,57].

В настоящее время известно более ста цитокинов, которые традиционно разделяют на несколько групп [3,6,7,24].

1. Интерлейкины (IL-1 - IL18) - секреторные регуляторные белки, обеспечивающие медиаторные взаимодействия в иммунной системе и ее связь с другими системами организма.

2. Интерфероны (IFN-альфа, бета, гамма) - противовирусные цитокины с выраженным иммунорегуляторным действием.

3. Факторы некроза опухоли (TNF альфа, бета) - цитокины с цитотоксическим и регуляторным действием.

4. Колониестимулирующие факторы (G-CSF, M-CSF, GM-CSF) - стимуляторы роста и дифференцировки гемопоэтических клеток, регулирующие гемопоэз.

5. Хемокины (IL-8, IL-16) - хемоаттрактанты для лейкоцитов.

6. Факторы роста - регуляторы роста, дифференцировки и функциональной активности клеток различной тканевой принадлежности (фактор роста фибробластов, фактор роста эндотелиальных клеток, фактор роста эпидермиса) и трансформирующие факторы роста (TGF бета).

Эти биорегуляторные молекулы определяют тип и длительность воспалительного и иммунного ответа, контролируют пролиферацию клеток, гемопоэз, ангиогенез, заживление ран и многие другие процессы [24,54].

Все исследователи подчеркивают, что цитокины лишены специфичности в отношении антигенов [3,6,7,40].

Эксперименты с культивируемыми легочными макрофагами и тучными клетками показали образование iNOS в ответ на гамма-интерферон, интерлейкин-1, фактор некроза опухоли и липополисахариды [5, 10, 44, 48, 59].

Экспрессия iNOS и cNOS на провоспалительные цитокины была обнаружена в альвеолоцитах животных и человека [5,12,21,39,52]. Добавление в культуру эпидермального фактора роста, регулятора функции эпителиальных клеток, снижало активность только индуцированного фермента [52].

Известно, что в зависимости от природы, цитокины действуют аутокринно - на сами клетки продуценты, паракринно - на другие клетки - мишени или эндокринно - на разные клетки за пределами места их продукции.

При этом они могут взаимодействовать друг с другом по агонистическому или антагонистическому принципу, изменяя функциональное состояние клеток-мишеней и формируя цитокиновую сеть [7,35,63].

Таким образом, цитокины представляют собой не разрозненные пептиды, а целостную систему, основными компонентами которой являются клетки-продуценты, сам белок - цитокин, рецептор его воспринимающий, и клетка-мишень.

Установлено, что при развитии острого повреждения легких повышается уровень провоспалительных цитокинов: IL-1, 6, 8, 12, TNF альфа, IFN альфа [10, 20,32,46,51,58]. Их эффект связан с расширением сосудов, увеличением их проницаемости и накоплением жидкости в ткани легкого [11,22,53,41].

Кроме того, в исследованиях [38,56,62] показана способность IFN гамма и TNF альфа индуцировать экспрессию молекул адгезии - ICAM -1 на эндотелиоцитах человека.

Молекулы адгезии, прилипая к лейкоцитам, тромбоцитам и клеткам эндотелия, формируют "rolling" (крутящиеся) нейтрофилы и способствуют агрегации частиц фибрина.

Эти процессы вносят свой вклад в нарушение капиллярного кровотока, увеличивают проницаемость капилляров, индуцируют локальный отек тканей. Замедлению капиллярного кровотока способствует активация NO, который вызывает дилятацию артериол [57,61].

Дальнейшая миграция лейкоцитов в очаг воспаления контролируется специальными цитокинами - хемокинами, которые продуцируются и секретируются не только активированными макрофагами, но и эндотелиальными клетками, фибробластами, гладкими миоцитами [11,43,47].

Их основная функция - поставлять нейтрофилы в очаг воспаления и активировать их функциональную активность. Основным хемокином для нейтрофилов является Il-8 [20]. Наиболее сильными его индукторами служат бактериальные липополисахариды, IL-1 и TNFальфа [6, 10, 26, 36].

Р. Bahra с соавт. [11] считают, что каждый шаг трансэндотелиальной миграции нейтрофилов регулируется стимулирующими концентрациями TNF альфа.

При развитии острого повреждения легких эндотелиоциты сосудов, эпителиоциты бронхов и альвеолярные макрофаги активируются и вовлекаются в фазовые взаимодействия [8,44].

В результате происходит, с одной стороны, их мобилизация и усиление защитных свойств, а, с другой стороны, возможно повреждение самих клеток и окружающих тканей [19, 39,49].

В ряде работ показано, что в очаге воспаления способен накапливаться продукт частичного восстановления кислорода - супероксид, кoторый инактивирует вазоактивное действие NO [4,55]. NO и супероксидный анион подвергаются быстрому взаимодействию с образованием пероксинитрита, повреждающего клетки [9].

Эта реакция способствует удалению NO из сосудистой и бронхиальной стенки, а так же с поверхности альвеолоцитов [5,60].

Представляет интерес исследования, показавшие, что традиционно рассматриваемый в качестве медиатора NO-токсичности, пероксинитрит может иметь физиологическое действие и вызывать сосудистую релаксацию через NO-опосредованное увеличении цГМФ в сосудистом эндотелии [5,9,37].

В свою очередь, пероксинитрит - это сильнодействующий оксидант, способный повреждать альвеолярный эпителий и легочной сурфактант [9,16]. Он вызывает разрушение белков и липидов мембран, повреждает эндотелий, увеличивает агрегацию тромбоцитов, участвует в процессах эндотоксемии. Его повышенное образование отмечено при синдроме острого повреждения легких [37].
Исследователи считают, что продуцируемый в результате активации индуцированного фермента NO, предназначен для неспецифической защиты организма от широкого спектра патогенных агентов, тормозит агрегацию тромбоцитов и улучшает местное кровообращение [8,18,60].
Установлено, что избыточное количество NO подавляет активность cNOS в клетках за счет взаимодействия с супероксидом и, возможно, в результате десенситизации гуанилатциклазы, приводящей к снижению цГМФ в клетке и к повышению внутриклеточного кальция [12,17].

Brett с соавт. [18] и Kooy с соавт. [37], анализируя значение нитрооксидергических механизмов в патогенезе РДСВ, высказали мнение, что ключевую роль в развитии синдрома может играть iNOS, пероксинитрит, а также нитротирозин - основной продукт воздействия пероксинитрита на белок.

Cuthbertson с соавт. [19] считают, что в основе острого повреждения легких лежит воздействие NO и пероксинитрита на эластазу и интерлейкин-8. Kobayashi c соавт. [36] также зарегистировали увеличение содержания iNOS, интерлейкина-1, интерлейкина-6, интерлейкина-8 в бронхоальвеолярной жидкости у больных с синдромом острого повреждения легких.

Meldrum c соавт. [44] показали уменьшение выработки воспалительных цитокинов легочными макрофагами при РДСВ под влиянием субстрата локальной продукции NO - L-аргинина.

Установлено, что в генезе синдрома острого повреждения легких существенную роль играет нарушение проницаемости сосудов, обусловленное действием цитокинов - TNF альфа, IL-2, GM-CSF, моноклональных антител к СD3 лимфоцитам на эндотелиальные клетки сосудов легких и иммуноциты [10,25, 26, 35].

Быстрое и сильное увеличение проницаемости легочных сосудов приводит к миграции нейтрофилов в ткань легких и высвобождению ими цитотоксических медиаторов, что является ведущим в развитии патологической альтерации легких [14,34,35,40].

В процессе развития острого повреждения легких TNF альфа увеличивает адгезию нейтрофилов к сосудистой стенке, усиливает их миграцию в ткани, способствует структурным и метаболическим изменениям эндотелиоцитов, нарушает проницаемость клеточных мембран, активирует образование других цитокинов и эйкозаноидов, вызывают апоптоз и некроз эпителиальных клеток легких [7, 16, 26].

Получены данные, свидетельствующие, что индуцированный введением LPS апоптоз макрофагов во многом связан с IFN гамма и снижается под действием IL-4, IL-10, TGF бета [6,25].

Однако Kobayashi с соавт. [36] получили данные, свидетельствующие, что IFN гамма может вовлекаться в процессы репарации эпителия слизистой дыхательных путей.

В исследованиях Hagimoto [29] содержатся сведения о том, что эпителиоциты бронхов и альвеол в ответ на TNF альфа или Fas-лиганд выделяют IL-8, IL-12. Этот процесс связан с активацией ядерного фактора Карра-В Fas-лигандом [61].

Существует мнение, что IL-8 является одним из наиболее важных цитокинов в патофизиологии острых легочных повреждений [3,14,40]. Miller с соавт. [46] при исследовании бронхо-альвеолярной жидкости у больных с РДСВ на фоне сеспсиса установили значительное увеличение уровня IL-8, по сравнению с пациентами с кардиогенным отеком легких.

Высказано предположение, что первичным источником Il-8 являются легкие, и этот критерий можно использовать при дифференциальной диагностике синдрома. Grau с соавт. [27] считают, что эндотелиоциты легочных капилляров служат важным источником цитокинов - IL-6, IL-8 при развитии острого повреждения легких.

Goodman с соавт. [26] при изучении динамики уровня цитокинов в жидкости бронхо-альвеолярного лаважа у больных РДСВ установили значительное увеличение IL-1бета, IL-8, моноцитарного хемотаксического пептида-1, эпителиального клеточного нейтрофильного активатора, макрофагального воспалительного пептида -1 альфа. При этом авторы полагают, что увеличение содержания IL-1 бета может служить маркером неблагоприятного исхода синдрома.

Bauer с соавт. [14] было показано, что контроль за содержанием в бронхоальвеолярной жидкости у больных РДСВ IL-8 можно использовать для мониторинга, снижение уровня IL-8 свидетельствует о неблагоприятном течении процесса.

В ряде исследований [10,19,34,40] также содержатся сведения, что уровень продукции цитокинов эндотелием сосудов легких влияет на развитие острого легочного повреждения и контроль за которым может быть примененен в клинической практике для ранней диагностики.

О возможных негативных последствиях повышения уровня провоспалительных цитокинов у больных РДСВ свидетельствуют исследования Martin с соавт. [43], Warner с соавт. [59].

Активированные цитокинами и бактериальными эндотоксинами альвеолярные макрофаги усиливают синтез NO [18,49]. Уровень продукции NO эпителиоцитами бронхов и альвеол, нейтрофилами, тучными клетками, эндотелиоцитами и гладкими миоцитами легочных сосудов также увеличивается, вероятно, через активацию ядерного фактора Карра-В [53,57,59,61].

Авторы считают, что продуцируемый в результате активации индуцированной NOS оксид азота, предназначен, в первую очередь, для неспецифической защиты организма.

Выделяясь из макрофагов, NO быстро проникает в бактерии, грибы, где ингибирует три жизненно важные группы ферментов: Н-электрон-транспортные, цикла Кребса и синтеза ДНК [4,12,16].

NO вовлекается в защиту организма на последних этапах иммунного ответа и образно рассматривается как "карающий меч" иммунной системы [4,49]. Однако, накапливаясь в клетке в неадекватно больших количествах, NO оказывает и повреждающий эффект [9].

Таким образом, при развитии синдрома острого повреждения легких цитокины и NO запускают последовательную цепь реакций, выражающихся в нарушении микроциркуляции, возникновении тканевой гипоксии, альвеолярного и интерстициального отека, повреждении метаболической функции легких.

Следовательно, можно констатировать, что изучение физиологических и патофизиологических механизмов действия цитокинов и NO является перспективным направлением для исследований и позволит в дальнейшем не только расширить представления о патогенезе РДСВ, но и определить диагностические и прогностические маркеры синдрома, разработать варианты патогенетически обоснованной терапии, направленной на уменьшение летальности.

Категория: Это очень интересно | Просмотров: 976 | Добавил: zdorovye-n | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
RSS

Форма входа

Категории раздела

Это очень интересно [133]
Уход за собой [91]
Гинекология. Роды [39]
Китайская медицина [11]
Раковые заболевания [22]
Апластическая анемия [1]
10 самых страшных болезней [10]
Клятва Гиппократа [1]
Жизнь после смерти [2]
Мужские заболевания [9]
Кровотечение [11]
Контрацептивы [15]
Только для девушек и женщин !!! [8]
Лечение гинекологических заб. [14]
Лекарственные средства [5]
Видео [32]

Поиск

Календарь

«  Декабрь 2007  »
ПнВтСрЧтПтСбВс
     12
3456789
10111213141516
17181920212223
24252627282930
31

Архив записей

Наш опрос

Ваша страна проживания
Всего ответов: 547

Друзья сайта

  • Официальный блог
  • Сообщество uCoz
  • FAQ по системе
  • Инструкции для uCoz
  • Статистика


    всего: 1
    Гостей: 1
    Пользователей: 0